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The small numbers of samples and large numbers of genes in microarray data sets preclude the application of 
conventional statistical methods; researchers have implemented analyses based on support-vector machines [1], 
cluster analysis [2-4], fuzzy logic [5], self-organizing maps [6]; perceptrons [7], and other statistical approaches 
[8-10]. Some of these approaches, particularly those based on clustering or on assumptions of multivariate 
Gaussian distributions for microarray data, are limited in the types of models they can generate, or equivalently, 
the types of gene-gene interactions they can capture from array data. In particular, clustering methods may not 
capture nonlinear multivariate interactions among genes, such as a model requiring that gene A be expressed only 
if genes B and C are expressed, and gene D is not expressed. To the extent that, for a given experimental 
condition and gene, gene expression follows a Gaussian distribution, we can model these data using a Gaussian 
mixture model (GMM) [11]. The utility of discretizing expression levels is indicated by researchers’ tendencies to 
threshold expression levels (or their ratios) manually in an effort to determine which might be differentially 
expressed across sample classes (e.g., [12]). The principal advantage of representing expression levels using 
categorical variables is the existence of methods for capturing multivariate nonlinear relationships among these 
variables. The approach presented herein, called Bayesian Microarray Analysis (BMA), consists of converting 
expression levels into categorical variables [13]; representing these variables and (categorical) clinical variables 
as nodes in a Bayesian network [14]; and mining these categorical data for associations among the variables [15-
17]. 
 
We tested these methods on the leukemia data from Golub et al. [18], and on the NCI data from Ross et al. [19], 
with the primary goal of histological tumor classification. For both data sets, BMA detected gene-histology 
associations that would be expected based on reports in the literature, as shown in Tables 1 and 2, respectively. 
For example, BMA found Zyxin to be strongly associated with the type of leukemia; in fact, this gene renders the 
Leukemia node conditionally independent of the remaining 7128 genes. Furthermore, as shown in Figure 1, even 
naïve Bayes classifiers with few genes demonstrate high classification accuracy. 
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Table 1 Leukemia Genes (Partial List) 
Zyxin
Phosphotyrosine independent ligand p62
Leptin receptor

C-myb
Cystatin A
Leukotriene C4 synthase (LTC4S)

CD33 antigen
Pentaxin-related gene
Adipsin
Azurocidin  
 

 
 
 
 
 
 
 
Table 2 NCI Genes (Partial List) 
Histology Gene

Breast P53

Breast Efs1

Breast Prolactin receptor

Breast EDDR1

CNS Sequence similar to pleiotrophin precursor

CNS THY-1

Colon ETS2

Colon SLC9A1

Colon Villin

Colon GA733  
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